Neuroelectronic Interfacing With Cultured Multielectrode Arrays Toward a Cultured Probe
نویسندگان
چکیده
Efficient and selective electrical stimulation and recording of neural activity in peripheral, spinal, or central pathways requires multielectrode arrays at micrometer scale. At present, wire arrays in brain, flexible linear arrays in the cochlea and cuff arrays around nerve trunks are in experimental and/or clinical use. Twoand three-dimensional brush-like arrays and sieve arrays, with around 100 electrode sites, have been proposed, fabricated in microtechnology, and/or tested in a number of labs. As there are no “blueprints” for the exact positions of neurons, an insertable multielectrode has to be designed in a redundant way. Even then, the efficiency of a multielectrode will be less than 100%, as not every electrode will contact a neural axon or soma. Therefore, “cultured probe” devices are being developed, i.e., cell-cultured planar multielectrode arrays (MEAs). They may enhance efficiency and selectivity because neural cells have been grown over and around each electrode site as electrode-specific local networks. If, after implantation, collateral sprouts branch from a motor fiber (ventral horn area) and if they can be guided and contacted to each “host” network, a very selective and efficient interface will result. Four basic aspects of the design and development of a cultured probe, coated with rat cortical or dorsal root ganglion neurons, are described. First, the importance of optimization of the cell-electrode contact is presented. It turns out that impedance spectroscopy, and detailed modeling of the electrode-cell interface, is a very helpful technique, which shows whether a cell is covering an electrode and how strong the sealing is. Second, the dielectrophoretic trapping method directs cells efficiently to desired spots on the substrate, and cells remain viable after the treatment. The number of cells trapped is dependent on the electric field parameters and the occurrence of
منابع مشابه
Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array.
There is increasing interest in interfacing dissociated neuronal cultures with planar multielectrode arrays (MEAs) for the study of the dynamics of neuronal networks. Here we report on the successful use of three-dimensional tip electrode arrays (3D MEAs), originally developed for use with brain slices, for recording and stimulation of cultured neurons. We observed that many neurons grew direct...
متن کاملSalt-induced self-assembly of bacteria on nanowire arrays.
Studying bacteria-nanostructure interactions is crucial to gaining controllable interfacing of biotic and abiotic components in advanced biotechnologies. For bioelectrochemical systems, tunable cell-electrode architectures offer a path toward improving performance and discovering emergent properties. As such, Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous ...
متن کاملShielded Coaxial Optrode Arrays for Neurophysiology
Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activi...
متن کاملComparative analysis of system identification techniques for nonlinear modeling of the neuron-microelectrode junction.
Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001